Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The nitrilase PtNIT1 catabolizes herbivore-induced nitriles in Populus trichocarpa.

Identifieur interne : 000C34 ( Main/Exploration ); précédent : 000C33; suivant : 000C35

The nitrilase PtNIT1 catabolizes herbivore-induced nitriles in Populus trichocarpa.

Auteurs : Jan Günther [Allemagne] ; Sandra Irmisch [Allemagne, Canada] ; Nathalie D. Lackus [Allemagne] ; Michael Reichelt [Allemagne] ; Jonathan Gershenzon [Allemagne] ; Tobias G. Köllner [Allemagne]

Source :

RBID : pubmed:30348089

Descripteurs français

English descriptors

Abstract

BACKGROUND

Nitrilases are nitrile-converting enzymes commonly found within the plant kingdom that play diverse roles in nitrile detoxification, nitrogen recycling, and phytohormone biosynthesis. Although nitrilases are present in all higher plants, little is known about their function in trees. Upon herbivory, poplars produce considerable amounts of toxic nitriles such as benzyl cyanide, 2-methylbutyronitrile, and 3-methylbutyronitrile. In addition, as byproduct of the ethylene biosynthetic pathway upregulated in many plant species after herbivory, toxic β-cyanoalanine may accumulate in damaged poplar leaves. In this work, we studied the nitrilase gene family in Populus trichocarpa and investigated the potential role of the nitrilase PtNIT1 in the catabolism of herbivore-induced nitriles.

RESULTS

A BLAST analysis revealed three putative nitrilase genes (PtNIT1, PtNIT2, PtNIT3) in the genome of P. trichocarpa. While PtNIT1 was expressed in poplar leaves and showed increased transcript accumulation after leaf herbivory, PtNIT2 and PtNIT3 appeared not to be expressed in undamaged or herbivore-damaged leaves. Recombinant PtNIT1 produced in Escherichia coli accepted biogenic nitriles such as β-cyanoalanine, benzyl cyanide, and indole-3-acetonitrile as substrates in vitro and converted them into the corresponding acids. In addition to this nitrilase activity, PtNIT1 showed nitrile hydratase activity towards β-cyanoalanine, resulting in the formation of the amino acid asparagine. The kinetic parameters of PtNIT1 suggest that the enzyme utilizes β-cyanoalanine and benzyl cyanide as substrates in vivo. Indeed, β-cyanoalanine and benzyl cyanide were found to accumulate in herbivore-damaged poplar leaves. The upregulation of ethylene biosynthesis genes after leaf herbivory indicates that herbivore-induced β-cyanoalanine accumulation is likely caused by ethylene formation.

CONCLUSIONS

Our data suggest a role for PtNIT1 in the catabolism of herbivore-induced β-cyanoalanine and benzyl cyanide in poplar leaves.


DOI: 10.1186/s12870-018-1478-z
PubMed: 30348089
PubMed Central: PMC6196558


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The nitrilase PtNIT1 catabolizes herbivore-induced nitriles in Populus trichocarpa.</title>
<author>
<name sortKey="Gunther, Jan" sort="Gunther, Jan" uniqKey="Gunther J" first="Jan" last="Günther">Jan Günther</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Irmisch, Sandra" sort="Irmisch, Sandra" uniqKey="Irmisch S" first="Sandra" last="Irmisch">Sandra Irmisch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Present Address: Michael Smith Laboratories, University of British Columbia, Vancouver, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Present Address: Michael Smith Laboratories, University of British Columbia, Vancouver</wicri:regionArea>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique</region>
</placeName>
<orgName type="university">Université de la Colombie-Britannique</orgName>
</affiliation>
</author>
<author>
<name sortKey="Lackus, Nathalie D" sort="Lackus, Nathalie D" uniqKey="Lackus N" first="Nathalie D" last="Lackus">Nathalie D. Lackus</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reichelt, Michael" sort="Reichelt, Michael" uniqKey="Reichelt M" first="Michael" last="Reichelt">Michael Reichelt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kollner, Tobias G" sort="Kollner, Tobias G" uniqKey="Kollner T" first="Tobias G" last="Köllner">Tobias G. Köllner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany. koellner@ice.mpg.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30348089</idno>
<idno type="pmid">30348089</idno>
<idno type="doi">10.1186/s12870-018-1478-z</idno>
<idno type="pmc">PMC6196558</idno>
<idno type="wicri:Area/Main/Corpus">000C06</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C06</idno>
<idno type="wicri:Area/Main/Curation">000C06</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C06</idno>
<idno type="wicri:Area/Main/Exploration">000C06</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The nitrilase PtNIT1 catabolizes herbivore-induced nitriles in Populus trichocarpa.</title>
<author>
<name sortKey="Gunther, Jan" sort="Gunther, Jan" uniqKey="Gunther J" first="Jan" last="Günther">Jan Günther</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Irmisch, Sandra" sort="Irmisch, Sandra" uniqKey="Irmisch S" first="Sandra" last="Irmisch">Sandra Irmisch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Present Address: Michael Smith Laboratories, University of British Columbia, Vancouver, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Present Address: Michael Smith Laboratories, University of British Columbia, Vancouver</wicri:regionArea>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique</region>
</placeName>
<orgName type="university">Université de la Colombie-Britannique</orgName>
</affiliation>
</author>
<author>
<name sortKey="Lackus, Nathalie D" sort="Lackus, Nathalie D" uniqKey="Lackus N" first="Nathalie D" last="Lackus">Nathalie D. Lackus</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reichelt, Michael" sort="Reichelt, Michael" uniqKey="Reichelt M" first="Michael" last="Reichelt">Michael Reichelt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kollner, Tobias G" sort="Kollner, Tobias G" uniqKey="Kollner T" first="Tobias G" last="Köllner">Tobias G. Köllner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany. koellner@ice.mpg.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alanine (analogs & derivatives)</term>
<term>Alanine (metabolism)</term>
<term>Aminohydrolases (genetics)</term>
<term>Aminohydrolases (metabolism)</term>
<term>Herbivory (MeSH)</term>
<term>Nitriles (metabolism)</term>
<term>Plant Leaves (enzymology)</term>
<term>Plant Leaves (genetics)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alanine (analogues et dérivés)</term>
<term>Alanine (métabolisme)</term>
<term>Aminohydrolases (génétique)</term>
<term>Aminohydrolases (métabolisme)</term>
<term>Feuilles de plante (enzymologie)</term>
<term>Feuilles de plante (génétique)</term>
<term>Herbivorie (MeSH)</term>
<term>Nitriles (métabolisme)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Alanine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Aminohydrolases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alanine</term>
<term>Aminohydrolases</term>
<term>Nitriles</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Alanine</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Aminohydrolases</term>
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Alanine</term>
<term>Aminohydrolases</term>
<term>Nitriles</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Herbivory</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Herbivorie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Nitrilases are nitrile-converting enzymes commonly found within the plant kingdom that play diverse roles in nitrile detoxification, nitrogen recycling, and phytohormone biosynthesis. Although nitrilases are present in all higher plants, little is known about their function in trees. Upon herbivory, poplars produce considerable amounts of toxic nitriles such as benzyl cyanide, 2-methylbutyronitrile, and 3-methylbutyronitrile. In addition, as byproduct of the ethylene biosynthetic pathway upregulated in many plant species after herbivory, toxic β-cyanoalanine may accumulate in damaged poplar leaves. In this work, we studied the nitrilase gene family in Populus trichocarpa and investigated the potential role of the nitrilase PtNIT1 in the catabolism of herbivore-induced nitriles.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>A BLAST analysis revealed three putative nitrilase genes (PtNIT1, PtNIT2, PtNIT3) in the genome of P. trichocarpa. While PtNIT1 was expressed in poplar leaves and showed increased transcript accumulation after leaf herbivory, PtNIT2 and PtNIT3 appeared not to be expressed in undamaged or herbivore-damaged leaves. Recombinant PtNIT1 produced in Escherichia coli accepted biogenic nitriles such as β-cyanoalanine, benzyl cyanide, and indole-3-acetonitrile as substrates in vitro and converted them into the corresponding acids. In addition to this nitrilase activity, PtNIT1 showed nitrile hydratase activity towards β-cyanoalanine, resulting in the formation of the amino acid asparagine. The kinetic parameters of PtNIT1 suggest that the enzyme utilizes β-cyanoalanine and benzyl cyanide as substrates in vivo. Indeed, β-cyanoalanine and benzyl cyanide were found to accumulate in herbivore-damaged poplar leaves. The upregulation of ethylene biosynthesis genes after leaf herbivory indicates that herbivore-induced β-cyanoalanine accumulation is likely caused by ethylene formation.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Our data suggest a role for PtNIT1 in the catabolism of herbivore-induced β-cyanoalanine and benzyl cyanide in poplar leaves.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30348089</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>11</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>Oct</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>The nitrilase PtNIT1 catabolizes herbivore-induced nitriles in Populus trichocarpa.</ArticleTitle>
<Pagination>
<MedlinePgn>251</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12870-018-1478-z</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Nitrilases are nitrile-converting enzymes commonly found within the plant kingdom that play diverse roles in nitrile detoxification, nitrogen recycling, and phytohormone biosynthesis. Although nitrilases are present in all higher plants, little is known about their function in trees. Upon herbivory, poplars produce considerable amounts of toxic nitriles such as benzyl cyanide, 2-methylbutyronitrile, and 3-methylbutyronitrile. In addition, as byproduct of the ethylene biosynthetic pathway upregulated in many plant species after herbivory, toxic β-cyanoalanine may accumulate in damaged poplar leaves. In this work, we studied the nitrilase gene family in Populus trichocarpa and investigated the potential role of the nitrilase PtNIT1 in the catabolism of herbivore-induced nitriles.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">A BLAST analysis revealed three putative nitrilase genes (PtNIT1, PtNIT2, PtNIT3) in the genome of P. trichocarpa. While PtNIT1 was expressed in poplar leaves and showed increased transcript accumulation after leaf herbivory, PtNIT2 and PtNIT3 appeared not to be expressed in undamaged or herbivore-damaged leaves. Recombinant PtNIT1 produced in Escherichia coli accepted biogenic nitriles such as β-cyanoalanine, benzyl cyanide, and indole-3-acetonitrile as substrates in vitro and converted them into the corresponding acids. In addition to this nitrilase activity, PtNIT1 showed nitrile hydratase activity towards β-cyanoalanine, resulting in the formation of the amino acid asparagine. The kinetic parameters of PtNIT1 suggest that the enzyme utilizes β-cyanoalanine and benzyl cyanide as substrates in vivo. Indeed, β-cyanoalanine and benzyl cyanide were found to accumulate in herbivore-damaged poplar leaves. The upregulation of ethylene biosynthesis genes after leaf herbivory indicates that herbivore-induced β-cyanoalanine accumulation is likely caused by ethylene formation.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Our data suggest a role for PtNIT1 in the catabolism of herbivore-induced β-cyanoalanine and benzyl cyanide in poplar leaves.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Günther</LastName>
<ForeName>Jan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Irmisch</LastName>
<ForeName>Sandra</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Present Address: Michael Smith Laboratories, University of British Columbia, Vancouver, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lackus</LastName>
<ForeName>Nathalie D</ForeName>
<Initials>ND</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reichelt</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gershenzon</LastName>
<ForeName>Jonathan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Köllner</LastName>
<ForeName>Tobias G</ForeName>
<Initials>TG</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-7037-904X</Identifier>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany. koellner@ice.mpg.de.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>10</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009570">Nitriles</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>923-01-3</RegistryNumber>
<NameOfSubstance UI="C004631">3-cyanoalanine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.4.-</RegistryNumber>
<NameOfSubstance UI="D000619">Aminohydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.5.1</RegistryNumber>
<NameOfSubstance UI="C021867">nitrilase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>OF5P57N2ZX</RegistryNumber>
<NameOfSubstance UI="D000409">Alanine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000409" MajorTopicYN="N">Alanine</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000619" MajorTopicYN="N">Aminohydrolases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060434" MajorTopicYN="N">Herbivory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009570" MajorTopicYN="N">Nitriles</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Benzyl cyanide</Keyword>
<Keyword MajorTopicYN="N">NIT1</Keyword>
<Keyword MajorTopicYN="N">Nitrilase</Keyword>
<Keyword MajorTopicYN="N">Plant defense</Keyword>
<Keyword MajorTopicYN="N">Populus trichocarpa</Keyword>
<Keyword MajorTopicYN="N">β-Cyanoalanine</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>01</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>10</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>10</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>10</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>11</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30348089</ArticleId>
<ArticleId IdType="doi">10.1186/s12870-018-1478-z</ArticleId>
<ArticleId IdType="pii">10.1186/s12870-018-1478-z</ArticleId>
<ArticleId IdType="pmc">PMC6196558</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1968 Oct 25;243(20):5302-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4302784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 May;198(3):685-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23437871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Nov;25(11):4737-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24220631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2015 Aug;56(8):1641-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26076971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2008 Nov;69(15):2655-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18842274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):502-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21075959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Feb;33(3):513-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12581309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2006 May;61(1-2):111-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16786295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(15-16):4225-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18182427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1990 Jun;93(2):631-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Oct;9(10):1781-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9368415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Dec;30(12):2725-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24132122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):540-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16760496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2001 Mar;212(4):508-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11525507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Jul;123(3):1163-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10889265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(1):77-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17944821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2013 Dec;73:128-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24095919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jul;51(2):293-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17559506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1984 May;81(10):3059-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16593463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Dec;80(6):1095-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25335755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2014 Nov;152(3):529-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24720378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2001;2(1):REVIEWS0001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11380987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Aug;37(8):1909-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24471487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1990 Oct;94(2):401-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2008 Dec;69(17):2937-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18995873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6021-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8016109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2013 Feb;63:159-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23262184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2011 Jun;72(9):897-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21492885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6649-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8022831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jan 26;276(4):2616-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11060302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Jun;182(4):1013-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19383103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10355-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8234297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2002 Jun;115(2):320-329</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12060252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2006 May;61(1-2):165-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16786299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18848-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18003897</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Canada</li>
</country>
<region>
<li>Colombie-Britannique</li>
</region>
<settlement>
<li>Vancouver</li>
</settlement>
<orgName>
<li>Université de la Colombie-Britannique</li>
</orgName>
</list>
<tree>
<country name="Allemagne">
<noRegion>
<name sortKey="Gunther, Jan" sort="Gunther, Jan" uniqKey="Gunther J" first="Jan" last="Günther">Jan Günther</name>
</noRegion>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<name sortKey="Irmisch, Sandra" sort="Irmisch, Sandra" uniqKey="Irmisch S" first="Sandra" last="Irmisch">Sandra Irmisch</name>
<name sortKey="Kollner, Tobias G" sort="Kollner, Tobias G" uniqKey="Kollner T" first="Tobias G" last="Köllner">Tobias G. Köllner</name>
<name sortKey="Lackus, Nathalie D" sort="Lackus, Nathalie D" uniqKey="Lackus N" first="Nathalie D" last="Lackus">Nathalie D. Lackus</name>
<name sortKey="Reichelt, Michael" sort="Reichelt, Michael" uniqKey="Reichelt M" first="Michael" last="Reichelt">Michael Reichelt</name>
</country>
<country name="Canada">
<region name="Colombie-Britannique">
<name sortKey="Irmisch, Sandra" sort="Irmisch, Sandra" uniqKey="Irmisch S" first="Sandra" last="Irmisch">Sandra Irmisch</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C34 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C34 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30348089
   |texte=   The nitrilase PtNIT1 catabolizes herbivore-induced nitriles in Populus trichocarpa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30348089" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020